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Abstract. We show that diffractive production of a single neutral pion in photon-induced reactions at high
energy is dynamically suppressed due to the approximate chiral symmetry of QCD. These reactions have
been proposed as a test of the odderon-exchange mechanism. We show that the odderon contribution to the
amplitude for such reactions vanishes exactly in the chiral limit. This result is obtained in a nonperturbative
framework and by using PCAC relations between the amplitudes for neutral pion and axial vector current
production.

1 Introduction

In this paper we study the diffractive production of a single
neutral pion in the scattering of a real or virtual photon on
a nucleon:

γ(∗)(q)+N(p)−→ π0(q′)+X(p′) . (1)

HereN stands for a proton or a neutron, andX denotes the
rest of the hadronic final state which can consist of a sin-
gle nucleon or of a group of hadrons. The four-momenta are
indicated in brackets. The usual invariant variables are

s= (p+ q)2 = (p′+ q′)2 , t= (p−p′) = (q− q′)2 . (2)

We always consider high energies, that is s�m2p . We as-
sume that there is a large rapidity gap between π0 and X
in (1). Since neutral pions have charge conjugationC =+1
these reactions are at high energy expected to occur due
to the exchange of an odderon, the C =−1 partner of the
well-established pomeron; see Fig. 1. (Note that through-
out this paper we draw the incoming particles to the right.)
For a review of high energy scattering in QCD see [1].
The odderon was introduced many years ago [2, 3] and

since then has been studied extensively from the theoret-
ical point of view; for a review see [4]. Recently, particular
progress has been made in understanding the odderon in
the perturbative regime [5, 6]. From the experimental side
the odderon has turned out to be an elusive object. There
is some evidence for it in high energy proton–proton and
antiproton–proton scattering [7] at a momentum trans-
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fer squared of |t| ≈ 1.0–1.5GeV2; see also [8] for a recent
discussion. But otherwise conclusive evidence for the exis-
tence of the odderon is missing. In [9–11] the suggestion
was made to look for the odderon in the reaction (1). Sub-
sequently, the photoproduction of π0 was investigated in
detail in [12]. (For a discussion of the photoproduction of
tensor and other pseudoscalar mesons, see [13] and [11].)
The cross section at a c.m. energy of

√
s= 20GeV was pre-

dicted to be

σ(γp→ π0X)≈ 300 nb , (3)

and only a weak dependence of this result on the energy√
s is expected. The uncertainties of the model of non-
perturbative dynamics used in [12] imply a rather large
uncertainty of about a factor 2 in the prediction (3). How-
ever, corresponding experimental searches at HERA found
no evidence for odderon-exchange reactions. The experi-
mental search at

√
s = 200GeV [14] resulted in an upper

Fig. 1. Diffractive production of a neutral pion in real or
virtual photon–nucleon scattering due to exchange of an
odderon (O)



686 C. Ewerz, O. Nachtmann: Chiral symmetry and diffractive neutral pion photo- and electroproduction

limit of

σ(γp→ π0N∗)< 49 nb (4)

at the 95% confidence level, hence excluding the predic-
tion (3) even if the large uncertainty inherent in the latter
is taken into account. The non-observation of diffractive
single pion production at HERA is especially striking since
among all reactions in which hadrons are diffractively pro-
duced this reaction is the one with the largest kinematical
phase space. Therefore there must be a dynamical mechan-
ism which strongly suppresses the production rate.
In a short paper [15] possible causes for the failure of

the calculations of [12] in comparisonwith experiment were
discussed. One of them is a very low odderon intercept
leading to a strong suppression of the cross section for the
process (1) at high energies. A second possibility discussed
in [15] is the failure of a factorisation hypothesis for field
strength correlators that had been used in the nonpertur-
bative model underlying the calculation of [12]. Another
known source of suppression of odderon-induced reactions
is the potentially small coupling of the odderon to the nu-
cleon. A possible reason for the smallness of this coupling
is a clustering of two constituent quarks of the nucleon into
a small-size system of diquark type [8, 16]. However, the
suppression due to that effect should only be relevant for
reactions in which the proton stays intact, but should not
lead to a sizable effect in reactions of type (1) in which the
proton dissociates or is excited [17].
Finally, it was pointed out in [15] that a suppression of

the cross section for diffractive single pion production can
occur due to the particular properties of the wave function
of the pion. These were not properly taken into account in
the calculation leading to the prediction of [12]. It is in fact
natural to expect that the special nature of the pion in the
context of chiral symmetry can have considerable effects on
the reaction (1).
In the present paper we give a detailed account of the

latter argument. We shall show that the chiral symmetry
of QCD leads to a vanishing amplitude for the reaction (1)
when the limits of high energies and vanishing pion mass
are taken. Our analysis is entirely based on nonperturba-
tive techniques. In particular, we shall use the functional
methods explained in detail in [18, 19] in connection with
the dipole picture for photon-induced reactions.
Our paper is organised as follows. In Sect. 2 we discuss

π0-production in a functional integral approach and use
PCAC to relate this reaction to one involving the axial vec-
tor current. In Sect. 3 we classify the contributions to the
amplitude at high energies and identify the contributions
which are leading at high energies. In Sect. 4 we find the de-
pendence of the latter on the light quark masses. In Sect. 5
we study the renormalisation of the amplitudes under con-
sideration and find that the dependence on the light quark
masses remains unchanged. In Sect. 6 we finally show that
the leading terms at high energies in fact vanish in the chi-
ral limitmπ→ 0, and we discuss this result. In Appendix A
we describe the functional methods used in Sect. 3. In Ap-
pendix B we outline how our results can be generalised to

single diffractive pion production with a break-up of the
nucleon.

2 The reactions γ(�)p→ π0p
and γ(�)p→A3p

In this section we consider as an example for (1) neutral
pion photo- and electroproduction on a proton

γ(∗)(q, ν)+p(p, s)−→ π0(q′)+p(p′, s′) . (5)

Momenta and spin labels are indicated in brackets. We
suppose

q2 =−Q2 ≤ 0 (6)

and have for real pions

q′
2
=m2π . (7)

Let ϕa(x) be a renormalised and correctly normalised
interpolating field operator for the isotriplet of pions,
a= 1, 2, 3. We have then

〈0|ϕa(x)|πb(q′)〉= e−iq
′xδab , (8)

and the physical pion states are

|π0(q′)〉= |π3(q′)〉 ,

|π±(q′)〉=
1
√
2
(|π1(q′)〉± i|π2(q′)〉) . (9)

The LSZ reduction formula [20] gives for the amplitude
of (5)

(2π)4δ(4)(p′+ q′−p− q)Mν
s′s(π

0; q′, p, q)

=−i

∫
d4x′d4xeiq

′x′e−iqx
(
�x′ +m

2
π

)

×〈p(p′, s′)|T∗ϕ3(x′)Jν(x)|p(p, s)〉 . (10)

Here eJν(x) is the hadronic part of the electromagnetic
current with e the proton charge. With the quark field
operator

ψ(x) =

⎛
⎜⎜⎜⎜⎜⎝

u(x)
d(x)
s(x)
c(x)
b(x)
t(x)

⎞
⎟⎟⎟⎟⎟⎠

(11)

we have

Jν(x) = ψ̄(x)γνQψ(x) . (12)

Here Q = diag(Qu, . . . , Qt) is the quark charge matrix
with Qu = 2/3, Qd =−1/3 etc. Our normalisation is such
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that the T -matrix element for (5) with a real photon of po-
larisation vector εν is given by

〈π0(q′), p(p′, s′)|T |γ(q, ε), p(p, s)〉= eMν
s′s(π

0; q′, p, q)εν .
(13)

In (13) we have, of course, q2 = 0 and q′2 =m2π. Our con-
ventions for kinematics, Dirac matrices etc. follow [21].
Starting from (10) we can extend the amplitudeMν

s′s
to off-shell pions; that is, we consider in the following
Mν
s′s(π

0; q′, p, q) of (10) for

q′2 ≤m2π , q
2 =−Q2 ≤ 0 . (14)

The reaction which we consider along with (5) is

γ(∗)(q, ν)+p(p, s)−→A3(q′, µ)+p(p′, s′) , (15)

that is, the production of an axial vector current instead
of the π0 meson. The isotriplet of axial vector currents is
given by

Aaµ(x) = ψ̄(x)γµγ5Taψ(x) (a= 1, 2, 3) . (16)

Here we denote by

Ta =

(
1
2τa 0
0 0

)
(17)

the flavour isospin matrices for the quarks, where the τa
are the Pauli matrices. We define the amplitude for reac-
tion (15) as

(2π)4δ(4)(p′+ q′−p− q)Mµν
s′s
(A3; q′, p, q)

=
i

2πmp

∫
d4x′d4xeiq

′x′e−iqx

×〈p(p′, s′)|T∗A3µ(x′)Jν(x)|p(p, s)〉 . (18)

For (18) we consider again the kinematic region (14).
The well-known PCAC relation (partially conserved

axial vector current) relates the divergence of the cur-
rents (16) to a correctly normalised pion field operator,

∂λA
aλ(x) =

fπm
2
π√
2
ϕa(x) ; (19)

see for example [22]. Here fπ ∼= 130MeV is the pion decay
constant, see p. 496 of [23].
We insert now the PCAC relation (19) in (10) and get

for q′2 <m2π

(2π)4δ(4)(p′+ q′−p− q)Mν
s′s(π

0; q′, p, q)

=−i

∫
d4x′d4xeiq

′x′e−iqx
√
2

fπm2π

(
−q′2+m2π

)

×
〈
p(p′, s′)|T∗∂′µA

3µ(x′)Jν(x)|p(p, s)
〉
. (20)

An integration by parts and using the vanishing of the
equal-time commutator,

[A30(x′), Jν(x)]δ(x′0−x0) = 0 , (21)

leads to

Mν
s′s(π

0; q′, p, q) =
2πmp

√
2

fπm2π
×
(
−q′2+m2π

)
iq′µM

µν
s′s
(A3; q′, p, q) ,

(22)

or, written differently,

iq′µM
µν
s′s
(A3; q′, p, q) =−

fπm
2
π

2πmp
√
2

1

q′2−m2π+ iε

×Mν
s′s(π

0; q′, p, q) . (23)

Let us as a side remark remind the reader at this point
that taking the limit q′2→ 0 in (23) leads to a Goldberger–
Treiman type relation [24]. Indeed, we can split the ampli-
tudeMµν

s′s
(A3; q′, p, q) into the pion pole part (see Fig. 2)

and the rest, which has no pion pole. The pole term must
be proportional to q′µ and its residue is fixed by (22). We
can take the pole term to be such that

Mµν
s′s
(A3; q′, p, q) = i

fπ

2πmp
√
2

q′µ

q′2−m2π+ iε

×Mν
s′s(π

0; q′, p, q)

+Mµν
s′s
(A3; q′, p, q)

∣∣
non-pole

.

(24)

Inserting this in (23) leads to

fπ

2πmp
√
2

(−m2π)

q′2−m2π+ iε
Mν
s′s(π

0; q′, p, q)

=
fπ

2πmp
√
2

(−q′2)

q′2−m2π+ iε
Mν
s′s(π

0; q′, p, q)

+iq′µM
µν
s′s
(A3; q′, p, q)

∣∣
non-pole

. (25)

Taking now the limit q′2→ 0 in (23) and (25) we get the
Goldberger–Treiman type relation

Mν
s′s(π

0; q′, p, q)
∣∣
q′2=0

=
2πmp

√
2

fπ
iq′µM

µν
s′s
(A3; q′, p, q)

∣∣∣∣∣
q′2=0

=
2πmp

√
2

fπ
iq′µM

µν
s′s
(A3; q′, p, q)

∣∣∣∣∣
non-pole,q′2=0

.

(26)

Fig. 2. Pion-pole contribution to the amplitude
Mµν
s′s(A

3; q′, p, q) in (18)
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Note that at q′2 = 0 the pion pole amplitude on the
r.h.s. of (25) gives no contribution. The Goldberger–
Treiman type relations are between the pion amplitude
extrapolated to q′2 = 0 and the current amplitude
q′µM

µν
s′s
(A3; q′, p, q) at q′2 = 0, where only the non-pole

term contributes.

3 Classification of diagrams for γ(�)p→A3p

In [18] we discussed real and virtual Compton scatter-
ing, γ(∗)p→ γ(∗)p, using functional methods. In particu-
lar, we gave a classification of contributions to the ampli-
tude in terms of nonperturbative diagrams and identified
the diagram classes which should be the leading ones at
high energies; see Sect. 2 of [18]. The general classifica-
tion scheme into diagram classes (a)–(g) of Fig. 2 in [18]
holds unchanged for reaction (15). All we have to do is to
replace the electromagnetic current representing the final
state photon in the Compton scattering case by the axial
vector current. Most of the discussion of which nonpertur-
bative diagrams are expected to be leading at high energies
can be taken over from Sect. 2.2 of [18]. There are dia-
grams with pure multi-gluon exchange in the t-channel as
shown in Fig. 3a and b. In our case this exchangemust have
odderon quantum numbers, that is C =−1. The analogues
of the diagrams (c)–(g) of Fig. 2 of [18] for our case cor-
respond to quark exchange in the t-channel. As explained
in Sect. 2.2 of [18] such diagrams are expected to be sup-
pressed for large s. Thus, the diagrams interesting for the
odderon search are those shown in Fig. 3a and b. As ex-
plained in detail in [18] the full lines in Fig. 3 represent
quark propagators in a fixed gluon potential. The shaded
blobs indicate the functional integral over all gluon poten-
tials with the measure given in (A.8) in Appendix A. As
in (13) of [18] we can now write

Mµν
s′s
(A3; q′, p, q) =M(a)µν

s′s
(A3; q′, p, q)+ . . .

+M(g)µν
s′s
(A3; q′, p, q) , (27)

according to the decomposition of the amplitude in the di-
agram classes (a)–(g). The relevant terms for us here are

M
(a)µν

s′s
(A3; q′, p, q) =

〈
Us′s(p

′, p)Aµν(q′, q)
〉
G
, (28)

M(b)µν
s′s

(A3; q′, p, q) =
〈
Us′s(p

′, p)B̃µ(q′)Bν(q)
〉
G
.

(29)

Fig. 3. Diagrams which are
expected to be the leading
ones for reaction (15) at high
energies

More details are given in Appendix A. The physical in-
terpretation and analytic expressions of the terms in (28)
and (29) are as follows. The scattering amplitude for the
γ(∗) converting to A3µ in the fixed gluon potential G (see
the upper part of Fig. 3a) is given by

Aµν(q′, q) =

∫
d4x′d4xeiq

′x′e−iqx

×Tr
[
γµγ5T3SF(x

′, x;G)γνQSF(x, x
′;G)
]
.

(30)

Here

SF(x, x
′;G)

= diag
(
S
(u)
F (x, x

′;G), S
(d)
F (x, x

′;G), . . . , S
(t)
F (x, x

′;G)
)

(31)

is the propagator matrix for the quarks moving in the fixed
gluon potential G. The factor Bν(q) in (29) represents the
absorption of the photon in the fixed gluon potential (see
Fig. 3b),

Bν(q) =

∫
d4xe−iqxiTr

[
γνQSF(x, x;G)

]
. (32)

Similarly, the factor B̃µ(q′) in (29) represents the creation
of the axial vector current in the fixed gluon potential (see
Fig. 3b),

B̃µ(q′) =

∫
d4x′eiq

′x′ iTr
[
γµγ5T3SF(x

′, x′;G)
]
. (33)

The factor Us′s(p
′, p) in (28) and (29) represents the scat-

tering of the proton in the fixed gluon potential. It is given
explicitly in (A.11) in Appendix A, together with the ex-
pression for the functional integral 〈·〉G.

4 Divergence relations
for axial vector amplitudes

In this section we study the divergences of the axial vec-
tor amplitudes in (28) and (29), that is q′µA

µν(q′, q) and

q′µB̃
µ(q′). For Aµν(q′, q) we find from (30) with (A.6)
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and (A.7)

q′µA
µν(q′, q) = i

∫
d4x′d4xeiq

′x′e−iqx
∂

∂x′µ

×Tr
[
γµγ5T3SF(x

′, x;G)γνQSF(x, x
′;G)
]

=−
1

3

∫
d4x′d4xeiq

′x′e−iqx

×
{
2m(0)u Tr

[
S
(u)
F (x, x

′;G)γ5S
(u)
F (x

′, x;G)γν
]

+m
(0)
d Tr

[
S
(d)
F (x, x

′;G)γ5S
(d)
F (x

′, x;G)γν
]}
.

(34)

We see explicitly here that q′µA
µν(q′, q) contains one fac-

tor of the small u- and d-quark masses and inserting
this in (28) we find the same for q′µM

(a)µν
s′s
(A3; q′, p, q).

With (22) this implies that alsoM(a)ν
s′s
(π0; q′, p, q) contains

one factor ofmu ormd. But as we shall see below this factor
of the light quark masses is cancelled by the factor m2π in
the denominator in (22). The crucial observation which we
will make in the present section is that q′µA

µν(q′, q) is, in
fact, proportional to the square of the light quark masses.
In order to trace the factors of the light quark masses

in our amplitudes we will in the following make the depen-
dence on m

(0)
q explicit. We therefore indicate the depen-

dence of the quark propagator on the quark mass by an
additional argument,

S
(q)
F (x, x

′;G) = S
(q)
F

(
x, x′;G,m(0)q

)
. (35)

We further introduce the free propagator for massless
quarks,

S
(q)
F (x, y; 0, 0) =−

∫
d4p

(2π)4
e−ip(x−y)

1

	p+ iε
, (36)

which satisfies (A.6) and (A.7) for G = 0 and m
(0)
q = 0.

From the defining equations (A.6) and (A.7) for the full
propagator we can easily derive the Lippmann–Schwinger
relation

S
(q)
F

(
x, y;G,m(0)q

)
= S

(q)
F (x, y;G, 0)

−

∫
d4zS

(q)
F (x, z;G, 0)m

(0)
q

×S(q)F
(
z, y;G,m(0)q

)
. (37)

In matrix notation where the space-time arguments and in-
tegrations are suppressed this reads

S
(q)
F

(
G,m(0)q

)
= S

(q)
F (G, 0)−S

(q)
F (G, 0)m

(0)
q S

(q)
F

(
G,m(0)q

)
.

(38)

Similarly, we find for the massless propagator the Lipp-
mann–Schwinger relation

S
(q)
F (G, 0) = S

(q)
F (0, 0)−S

(q)
F (0, 0)g

(0) 	Ga
λa

2
S
(q)
F (G, 0) .

(39)

Here g(0) is the unrenormalised QCD coupling constant,
and λa are the Gell–Mann matrices. From (39) we get (still
using matrix notation)

S
(q)
F (G, 0) =

[
1+S

(q)
F (0, 0)g

(0) 	Ga
λa

2

]−1
S
(q)
F (0, 0)

=
∞∑
n=0

(
−S

(q)
F (0, 0)g

(0) 	Ga
λa

2

)n
S
(q)
F (0, 0) .

(40)

Since all terms on the r.h.s. of (40) have an odd number of
γ matrices we find immediately

S
(q)
F (x, x

′;G, 0)γ5+γ5S
(q)
F (x, x

′;G, 0) = 0 . (41)

That is, the massless quark propagator in a fixed gluon po-
tential anticommutes with γ5.
Let us now consider for q = u, d the trace part of the

integrand in (34),

Eν
(
x, x′;G,m(0)q

)
=Tr

[
S
(q)
F

(
x, x′;G,m(0)q

)
γ5

×S(q)F
(
x′, x;G,m(0)q

)
γν
]
. (42)

Using (41) together with the cyclicity of the trace we find

immediately form
(0)
q = 0

Eν(x, x′;G, 0) = 0 . (43)

With this and (38) we get for Eν of (42)

Eν
(
x, x′;G,m(0)q

)
=m(0)q E

′ν(x, x′;G, 0)+O
((
m(0)q
)2)
,

(44)

where

m(0)q E
′ν(x, x′;G, 0) =−

∫
d4zTr

[
S
(q)
F (x, z;G, 0)m

(0)
q

×S
(q)
F (z, x

′;G, 0)γ5S
(q)
F (x

′, x;G, 0)γν

+S
(q)
F (x, x

′;G, 0)γ5S
(q)
F (x

′, z;G, 0)m(0)q

×S(q)F (z, x;G, 0)γ
ν
]
. (45)

Note that only the massless propagator occurs in this ex-
pression. The presence of the massless propagator might
potentially lead to infrared divergences when we consider
the renormalisation of our amplitudes in the next section.
But since we need to consider only the leading term in the
light quark mass in the expansion (44) we can easily avoid
this potential problem. Namely, we can replace the mass-
less propagator in (45) by the massive propagator. The
resulting expansion

Eν(x, x′;G,m(0)q ) =m
(0)
q E

′ν
(
x, x′;G,m(0)q

)
+O
((
m(0)q
)2)
, (46)
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Fig. 4. Diagrammatic rep-

resentation of m
(0)
q E

′ν(x, x′;

G,m
(0)
q ) (47) as the sum of

two quark loops in a given
gluon potential

with

m(0)q E
′ν(x, x′;G,m(0)q )

=−

∫
d4zTr

[
S
(q)
F

(
x, z;G,m(0)q

)
m(0)q

×S(q)F
(
z, x′;G,m(0)q

)
γ5S

(q)
F

(
x′, x;G,m(0)q

)
γν

+S
(q)
F

(
x, x′;G,m(0)q

)
γ5S

(q)
F

(
x′, z;G,m(0)q

)
m(0)q

×S(q)F
(
z, x;G,m(0)q

)
γν
]

(47)

differs from (44) only in terms of higher order in the quark
mass due to (38). The diagrams representingE′ν are shown
in Fig. 4. They correspond to a loop with a photon vertex,
a pseudoscalar vertex, and a scalar vertex representing the
quark mass insertion. Inserting (46) and (47) in (34) we see

that q′µA
µν(q′, q) is proportional to

(
m
(0)
q

)2
,

q′µA
µν(q′, q) =−

1

3

∫
d4x′d4xeiq

′x′e−iqx

×
[
2
(
m(0)u
)2
E′ν
(
x, x′;G,m(0)u

)
+
(
m
(0)
d

)2
E′ν
(
x, x′;G,m

(0)
d

)]
+O
((
m(0)u
)3
,
(
m
(0)
d

)3)
. (48)

In a similar way we can discuss the divergence of the
amplitude B̃µ(q′) (33). We find

q′µB̃
µ(q′) = iq′µ

1

2

∫
d4x′eiq

′x′Tr
[
γµγ5S

(u)
F

(
x′, x′;G,m(0)u

)

−γµγ5S
(d)
F

(
x′, x′;G,m

(0)
d

)]

=−i

∫
d4x′eiq

′x′
{
m(0)u Tr

[
γ5S

(u)
F

(
x′, x′;G,m(0)u

)]

−m(0)d Tr
[
γ5S

(d)
F

(
x′, x′;G,m

(0)
d

)]}
. (49)

Note that in the isospin symmetry limit, that is form
(0)
u =

m
(0)
d , we have q

′
µB̃
µ(q′) = 0. But in reality the light quark

masses are small but quite different, see [25] and below.
For the trace part of the integrand in (49) we easily find
with (38)–(41) for q = u, d

F (x′;G,m(0)q ) = Tr
[
γ5S

(q)
F

(
x′, x′;G,m(0)q

)]
=m(0)q F

′(x′;G, 0)+O
((
m(0)q
)2)
,

(50)

and

m(0)q F
′(x′;G, 0) =−

∫
d4zTr

[
γ5S

(q)
F (x

′, z;G, 0)

×m(0)q S
(q)
F (z, x

′;G, 0)
]
. (51)

Again we find it convenient to replace the massless prop-
agator in this expression by the propagator for massive
quarks as we did from (45) to (47). Hence we write

F (x′;G,m(0)q ) =m
(0)
q F

′
(
x′;G,m(0)q

)
+O
((
m(0)q
)2)
(52)

with

m(0)q F
′(x′;G,m(0)q ) =−

∫
d4zTr

[
γ5S

(q)
F

(
x′, z;G,m(0)q

)

×m(0)q S
(q)
F

(
z, x′;G,m(0)q

)]
, (53)

which differs from (51) only by terms of higher order in

m
(0)
q . The diagram corresponding to (53) is shown in figure
Fig. 5.We have a quark loop with one pseudoscalar and one
scalar vertex, and the latter is again given by a quark mass
insertion. Inserting (52) and (53) in (49) we see that also
q′µB̃

µ(q′) is proportional to the square of the light quark
masses,

q′µB̃
µ(q′) =−i

∫
d4x′eiq

′x′
[(
m(0)u
)2
F ′
(
x′;G,m(0)u

)

−
(
m
(0)
d

)2
F ′
(
x′;G,m

(0)
d

)]
+O
((
m(0)u
)3
,
(
m
(0)
d

)3)
. (54)

As a final point in this section we discuss the question of
possible anomalous contributions [26–29] in the divergence

Fig. 5. Diagrammatic representation of m
(0)
q F

′(x′;G,m
(0)
q )

(53) as a quark loop in a given gluon potential
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relations (34) and (49). We are dealing here with the diver-
gence of axial vector currents in an external vector (here:
gluon) field and this is precisely the case studied explicitly
in [27]. The electromagnetic part of the anomaly is not rele-
vant for us here since in our reactions (5) and (15) only one
photon is involved. The gluon anomaly on the other hand
is relevant for us. The divergence of the axial vector current
for one quark flavour reads

∂µq̄(x)γ
µγ5q(x) = 2im

(0)
q q̄(x)γ5q(x)

+
(g(0))2

32π2
εµν�σG

µν(x)G�σ(x) ,

(55)

where we use the convention ε0123 = 1. The anomalous
gluonic part of the divergence of the axial vector current
in (55) is, however, independent of the quark mass. Thus
the anomalous gluonic pieces cancel in the divergence of
the axial vector current A3µ of (16) since

A3µ(x) =
1

2
ū(x)γµγ5u(x)−

1

2
d̄(x)γµγ5d(x) . (56)

5 Renormalisation

So far our formulae are expressed in terms of bare quanti-
ties. In the present section we want to consider the renor-
malisation procedure for the amplitudes obtained above.
We use (48) to obtain from (28)

q′µM
(a)µν
s′s
(A3; q′, p, q) =

〈
Us′s(p

′, p)q′µA
µν(q′, q)

〉
G

=−
1

3

∫
d4x′d4xeiq

′x′e−iqx

×
〈
Us′s(p

′, p)
[
2
(
m(0)u
)2
E′ν
(
x, x′;G,m(0)u

)
+
(
m
(0)
d

)2
E′ν
(
x, x′;G,m

(0)
d

)]〉
G
. (57)

Here and in the following terms of cubic or higher order in
the light quark masses are neglected. Using the methods
described in Appendix A we can show that this expres-
sion can also be obtained as the contribution of diagram
class (a) contained in the following correlation function:

(2π)4δ(4)(p′+ q′−p− q)q′µM
(a)µν

s′s
(A3; q′, p, q)

=−
1

2πmp

∫
d4x′d4xd4zeiq

′x′e−iqx

×〈p(p′, s′)|T∗
[(
m(0)u ū(x

′)γ5u(x
′)
)(
m(0)u ū(z)u(z)

)
−
(
m
(0)
d d̄(x

′)γ5d(x
′)
)(
m
(0)
d d̄(z)d(z)

)]
Jν(x)|p(p, s)〉

∣∣∣
(a)
;

(58)

see also Fig. 6 below. The subscript (a) in this expression
indicates that only the diagrams of type (a) of the correla-
tion function in the integrand are taken into account.

We can obtain the divergence ofM(b)µν in a completely
analogous way. We get from (29), (49), (52) and (54)

q′µM
(b)µν
s′s

(A3; q′, p, q) =
〈
Us′s(p

′, p)q′µB̃
µ(q′)Bν(q)

〉
G

=−i

∫
d4x′eiq

′x′

×
〈
Us′s(p

′, p)
[(
m(0)u
)2
F ′
(
x′;G,m(0)u

)
−
(
m
(0)
d

)2
F ′
(
x′;G,m

(0)
d

)]
Bν(q)

〉
G
.

(59)

We can then relate this expression to the correlation func-
tion on the r.h.s. of (58) involving pseudoscalar, scalar and
vector currents, but now taking into account only the dia-
grams of type (b).
It is well known (see for instance [30]) that the quark

mass and the scalar and pseudoscalar currents have the
same renormalisation constant Zmq. We have for the
masses

mRq =m
(0)
q Z

−1
mq (q = u, d) , (60)

where for definiteness we choosemRq to be the renormalised

quark masses in the MS scheme at renormalisation point
µ= 2GeV, see [23]. The corresponding renormalised scalar
and pseudoscalar currents are

(q̄(x)q(x))R = Zmqq̄(x)q(x) ,

(q̄(x)γ5q(x))
R = Zmqq̄(x)γ5q(x) (q = u, d) . (61)

We have thus

mRq (q̄(x)q(x))
R =m(0)q q̄(x)q(x) ,

mRq (q̄(x)γ5q(x))
R =m(0)q q̄(x)γ5q(x) . (62)

We insert (62) in (58) and add the corresponding contribu-
tion for the divergence of the amplitudeM(b) to get

(2π)4δ(4)(p′+ q′−p− q)q′µM
(a+b)µν
s′s

(A3; q′, p, q)

=−
1

2πmp

∫
d4x′d4xd4zeiq

′x′e−iqx

×
{(
mRu
)2
〈p(p′, s′)|T∗(ū(x′)γ5u(x

′))R(ū(z)u(z))R

×Jν(x)|p(p, s)〉|(a+b)

×−(mRd )
2〈p(p′, s′)|T∗(d̄(x′)γ5d(x

′))R(d̄(z)d(z))R

×Jν(x)|p(p, s)〉|(a+b)
}
. (63)

Here we have used that in QCD the vector current Jν(x)

does not get renormalised. We now define C(q)ν
s′s
by

(2π)4δ(4)(p′+ q′−p− q)C(q)ν
s′s
(q′, p, q)

=−
1

2πmp

∫
d4x′d4xd4zeiq

′x′e−iqx

×〈p(p′, s′)|T∗(q̄(x′)γ5q(x
′))R(q̄(z)q(z))R

×Jν(x)|p(p, s)〉|(a+b) . (64)

The diagrams for the integrand in (64) are shown in

Fig. 6. Note that even for massless quarks we have C
(u)ν
s′s 	=
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Fig. 6. The diagrams of type
(a) and (b) represent the cor-

relation function C
(q)ν
s′s of (64)

C(d)ν
s′s
, because u- and d-quarks contribute differently in

the current Jν . Since C(q)ν in (64) involves only renor-
malised quantities it should be finite. With (64) we obtain
from (63)

q′µM
(a+b)µν
s′s

(A3; q′, p, q) =
(
mRu
)2
C(u)ν
s′s
(q′, p, q)

−
(
mRd
)2
C(d)ν
s′s
(q′, p, q) .

(65)

In (63) and (65) we have again neglected terms of cubic or
higher order in the light quark masses.
With (65) we have shown that the divergence ampli-

tude q′µM
(a+b)µν
s′s (A3; q′, p, q) is indeed proportional to the

square of the renormalised light quark masses.

6 Results and conclusions

It is well known that the light quark masses are directly re-
lated to m2π. Indeed one finds in the chiral limit (see (8.1)
of [25]) for the average of the quark masses

m̂≡
1

2

(
mRu +m

R
d

)
=
1

2B
m2π . (66)

Here

B =−
2

f2π
〈0|
(
ū(x)u(x)

)R
|0〉 (67)

is a hadronic constant which stays finite in the chiral limit
mRu,d→ 0.
Experimentally the light quark masses still are not too

well known, see [23]. In the following we take our estimates

of ‘central’ values extracted from [23] and assume these
masses to be mRu

∼= 3MeV and mRd
∼= 7MeV at a renor-

malisation scale of 2 GeV. This gives m̂∼= 5MeV, and with
mπ = 135MeV we get B ∼= 1820MeV. The ratios of the
light quark masses and the mean are then

ru =
mRu
m̂
∼= 0.6 , rd =

mRd
m̂
∼= 1.4 . (68)

Now we go back to (22) and discuss the quark mass, re-
spectively m2π, dependence ofM

ν
s′s(π

0; q′, p, q) in the chi-
ral limit mRu,d→ 0. For high energies we consider only the
odderon-exchange diagrams (a) and (b) of Fig. 3 for the
reasons given in Sect. 3. We have then for the amplitudes
corresponding to the sum of those diagrams

M(a+b)ν
s′s

(π0; q′, p, q)≡
2πmp

√
2

fπm2π

(
− q′2+m2π

)
iq′µ

×M(a+b)µν
s′s

(A3; q′, p, q) (69)

and obtain from (65) with (66) and (68)

M(a+b)ν
s′s

(π0; q′, p, q) =m2π
πmp

fπB2
√
2

×
[
− r2ui

(
q′2−m2π

)
C(u)ν
s′s
(q′, p, q)

+ r2d i
(
q′2−m2π

)
C(d)ν
s′s
(q′, p, q)

]
.

(70)

The correlation functions C(u)ν and C(d)ν occurring in (70)
are properly renormalised. It is clear from their definition
in (64) (see also Fig. 6) that they will have pion poles which
are just cancelled by the explicit factors

(
q′2−m2π

)
in (70).

Otherwise these functions should be finite in the chiral
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Fig. 7. Odderon exchange
diagrams for γ∗p→ A3nπ+,
reaction (72)

limit. Also mp, fπ and B are known to approach finite
values in the chiral limit; see for example [25]. Thus, due
to the explicit factorm2π in (70) the odderon-exchange am-
plitude for the reaction γ(∗)p→ π0p vanishes in the chiral
limitm2π→ 0. This is the main result of the present paper.
In the case of approximate chiral symmetry, as realised

in Nature, we do not expect the odderon-exchange ampli-
tude for the reaction γ(∗)p→ π0p to vanish exactly. But
from the above result we should expect that the approxi-
mate chiral symmetry leads to a strong dynamical suppres-
sion of this amplitude. It is difficult to assess the numerical
effect of this suppression, a rough estimate has been given
in [15]. It indicates that the effect of approximate chiral
symmetry can modify the prediction (3) of [12] such as to
reconcile it with the experimental upper bound (4) on the
diffractive photoproduction of neutral pions.
Our result (70) holds for all photon virtualities Q2 and

momentum transfers
√
−t. In particular, it should also ex-

tend into the perturbative region of largeQ2 or large
√
−t.

In this context it is worth pointing out that the result
matches nicely the perturbative result of [31] where the
diffractive reaction γ(∗)p→ ηcp was considered at high en-
ergies. In that reaction perturbation theory can be applied
because of the large scale given by the charm quark mass.
In leading order in perturbation theory only diagrams of
type (a) contribute to the γ(∗)→ ηc impact factor. In [31]
this impact factor was computed for an arbitrary number
of gluons exchanged in the t-channel. It was found that for
any number of exchanged gluons the impact factor, and
hence the amplitude for that reaction, is linear in the quark
mass. This agrees with the result that we find here based on
general nonperturbative calculations, and the mechanism
leading to that result is in fact the perturbative realisation
of the one that we have described here in Sect. 4.
Let us point out that we can easily extend our result to

the general reaction (1) with nucleon dissociation. As an
example we discuss in Appendix B the reactions

γ(∗)(q, ν)+p(p, s)→ π0(q′)+n(p′1, s
′)+π+(p′2)

(71)

and

γ(∗)(q, ν)+p(p, s)→A3(q′, µ)+n(p′1, s
′)+π+(p′2) .

(72)

With the same techniques as above we find that taking the
divergence of the odderon-exchange diagrams for (72) (see
Fig. 7) gives an explicit factorm2π in the amplitude for (71).
That is, the odderon-exchange contribution to the reac-
tion (71) vanishes in the chiral limit.
Finally, our findings can also be generalised to reactions

of two real or virtual photons which will be relevant at the
LHC and at a future ILC. Namely, it is straightforward
to apply the same techniques to the diffractive reaction
γ(∗)+γ(∗)→ π0+X at high energy. Again we find that the
amplitude for the odderon-exchange contribution to this
process is proportional to m2π and vanishes in the chiral
limit. In the diffractive reaction γ(∗)+γ(∗)→ π0+π0 the
odderon-exchange contribution is even suppressed by a fac-
tor m4π in the amplitude. We therefore expect the cross
sections for these processes to be very small at high ener-
gies, independently of the odderon intercept.
To summarise, we have studied the diffractive photo-

and electroproduction of a neutral pion on a nucleon,
γ(∗)+N → π0+X (reaction (1)). We have shown that the
diagrams with multi-gluon exchange in the t-channel, that
is the odderon-exchange diagrams, vanish in the chiral
limit. In the real world with approximate chiral symmetry
these diagrams are dynamically suppressed by a factorm2π,
and hence the cross section by a factor m4π. At high ener-
gies the other types of diagrams for reaction (1) (see Fig. 2
of [18]) are expected to be suppressed by inverse powers
of the c.m. energy. Thus we have as a firm prediction of
QCD that the cross sections for the reactions (1) should
be very small at high energies compared to cross sections
for reactions in which pomeron exchange is allowed like for
instance γ(∗)+N → �0+X.

Appendix A: Functional methods

Here we give a short outline of the functional method in-
troduced in [18] which is used to derive (28) and (29). We
start from (20) and use the LSZ reduction formula [20] to
represent the amplitude as an integral over a Green’s func-
tion. The latter is then represented as a functional integral
and the quark degrees of freedom are integrated out, giv-
ing rise to nonperturbative quark propagators in a given
gluon potential. This leads to a number of nonperturbative
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diagrams distinguished by the topology of the quark-line
skeleton.
In detail, let ψp(x) be a suitable interpolating field oper-

ator for the proton. We can take ψp to contain three quark
fields,

ψp(x) = Γαβγuα(x)uβ(x)dγ(x) , (A.1)

and accordingly

ψ̄p(x) = Γ̄αβγ d̄γ(x)ūβ(x)ūα(x) , (A.2)

where Γαβγ and Γ̄αβγ are coefficient matrices and α, β,
γ summarise Dirac and colour indices. Explicit construc-
tions of field operatorsψp(x) of the type (A.1) can be found
in [32–34]. Let Zp be the proton’s wave function renormal-
isation constant defined by

〈0|ψp(x)|p(p, s)〉 =
√
Zpe

−ipxus(p) . (A.3)

As explained above, the amplitude (18) can be represented
in terms of a functional integral

Mµν
s′s
(A3; q′, p, q)

=−
i

2πmpZp

∫
d4x′d4xd4yeiq

′x′e−iqxe−ipy

×
{
ūs′(p

′)(−i
→
	∂ y′ +mp)

×
1

Z

∫
D(G, q, q̄)ψ̄(x′)γµγ5T3ψ(x

′)ψ̄(x)γνQψ(x)

×ψp(y
′)ψ̄p(y)

× exp
[
i

∫
d4zLQCD(z)

]
(i
←
	∂ y +mp)us(p)

}∣∣∣∣
y′=0

.

(A.4)

Gauge fixing and Fadeev–Popov terms are implied and not
written out explicitly.
Now we can integrate out the quark degrees of free-

dom in the functional integral since LQCD is bilinear in the
quark fields. This leads to a purely gluonic functional inte-
gral where all explicit quark fields in (A.4) are contracted
out. As in (A.6) of [18] the contraction of two quark fields
of flavour q is defined as

q(x)q̄(y) =
1

i
S
(q)
F (x, y;G) , (A.5)

that is, as the quark propagator in the given gluon poten-
tial G. The propagator (A.5) satisfies (see (16) and Ap-
pendix A of [18])

(
iγµDµ−m

(0)
q

)
S
(q)
F (x, y;G) =

(
i 	∂x− g

(0) 	Ga
λa

2
−m(0)q

)

×S(q)F (x, y;G)

=−δ(4)(x−y) (A.6)

and

S
(q)
F (x, y;G)

(
i
←
	Dy +m

(0)
q

)
= S

(q)
F (x, y;G)

(
i
←
	∂ y

+g(0) 	Ga
λa

2
+m(0)q

)

= δ(4)(x−y) , (A.7)

where g(0) is the bare coupling parameter andm
(0)
q are the

bare quark masses. Performing these contractions for the
functional integral in (A.4) we get a number of terms, (a)–
(g), in analogy to Fig. 2 of [18]. The diagrams (a) and (b)
are shown in Fig. 3. The shaded blobs correspond to the
functional integral 〈·〉G. For any functional F [G] we define

〈F [G]〉G =
1

Z ′

∫
D(G)F [G]

×
∏
q

det
[
− i(iγλDλ−m

(0)
q + iε)

]

× exp

[
−i

∫
d4x
1

2
Tr
(
Gλ�(x)G

λ�(x)
)]
,

(A.8)

where Gλ� is the matrix-valued gluon field strength ten-
sor and Z ′ is the normalisation factor obtained from the
condition

〈1〉G = 1 . (A.9)

In (A.8) the fermion determinant is included, gauge fix-
ing and Fadeev–Popov terms are implied. All quantities
in (A.8) are the unrenormalised ones. The product over q
runs over all quark flavours.
In Fig. 3a the quarks of the axial vector and the electro-

magnetic current in (A.4) are contracted with each other
as are the fields of the proton operators. This leads to
M(a)µν (28). The contraction of the quark fields in ψp with
those in ψ̄p gives

ψp(y
′)ψ̄p(y) = Γα′β′γ′ Γ̄αβγ

1

i
S
(d)
Fγ′γ
(y′, y;G)

×

{
1

i
S
(u)
Fβ′β
(y′, y;G)

1

i
S
(u)
Fα′α
(y′, y;G)

−(α↔ β)

}
. (A.10)

The quantity Us′s(p
′, p) in (28) and (29) representing the

lower part of the diagrams of Fig. 3a and b, that is, the
scattering of the proton in the fixed gluon potential, is de-
fined as

Us′s(p
′, p) =−

i

2πmpZp

∫
d4ye−ipy

[
ūs′(p

′)(−i
→
	∂ y′ +mp)

×ψp(y
′)ψ̄p(y)(i

←
	∂ y +mp)us(p)

]∣∣∣∣
y′=0

.

(A.11)

In the matrix elementM(b)µν the quarks of the axial vec-
tor current in (A.4) are contracted among themselves as
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are the quarks of the electromagnetic current. The contrac-
tion of the proton fields is as forM(a)µν .
The matrix elementsM(c)µν

s′s
toM(g)µν

s′s
in (27) are the

analogues of the diagram classes of Fig. 2c–g in [18] with
the electromagnetic current for the photon γ(µ) replaced
by the axial vector current. As discussed in [18] these di-
agrams do not correspond to multi-gluon exchange in the
t-channel. They are expected to give only small contribu-
tions at high energies. Typically we expect for them Regge
behaviour corresponding to the exchange of meson trajec-
tories or fermion trajectories.

Appendix B: Reactions with nucleon
dissociation

Here we discuss the reactions (71) and (72). With the
charge symmetry relation we get the interpolating field for
the neutron from (A.1) as

ψn(x) =−Γαβγdα(x)dβ(x)uγ(x) . (B.1)

According to (19) and (9) we have for the interpolating
π+-field

ϕ+(x) =
1

fπm2π
∂λ
[
A1λ(x)− iA2λ(x)

]

=
1

fπm2π
∂λ
[
d̄(x)γλγ5u(x)

]
. (B.2)

We define the amplitudes for (71) and (72) as follows:

(2π)4δ(4)
(
p′1+p

′
2+ q

′−p− q
)
Mν
s′s

(
π0, n, π+; p′2, q

′, p, q
)

=−i

∫
d4x′d4xeiq

′x′e−iqx
(
�x′+m

2
π

)

×
〈
π+
(
p′2
)
, n
(
p′1, s

′
)
|T∗ϕ3(x′)Jν(x)|p(p, s)

〉
,

(B.3)

(2π)4δ(4)
(
p′1+p

′
2+ q

′−p− q
)
Mµν
s′s

(
A3, n, π+; p′2, q

′, p, q
)

=
i

2πmp

∫
d4x′d4xeiq

′x′e−iqx

×
〈
π+
(
p′2
)
, n
(
p′1, s

′
)
|T∗A3µ(x′)Jν(x)|p(p, s)

〉
.

(B.4)

As in (22) we obtain here from PCAC (19)

Mν
s′s

(
π0, n, π+; p′2, q

′, p, q
)
=
2πmp

√
2

fπm2π

(
− q′2+m2π

)
iq′µ

×Mµν
s′s

(
A3, n, π+; p′2, q

′, p, q
)
.

(B.5)

With the LSZ reduction formula [20] we get from (B.4)

Mµν
s′s

(
A3, n, π+; p′2, q

′, p, q
)

=
1

2πmpZp

∫
d4x′d4xd4y′2d

4yeiq
′x′e−iqxeip

′
2y
′
2e−ipy

×
[(
�y′2
+m2π

)
ūs′
(
p′1
)(
− i
→
	∂ y′1
+mn

)
×
〈
0|T∗ϕ+

(
y′2
)
ψn
(
y′1
)
A3µ(x′)Jν(x)ψ̄p(y)|0

〉

×
(
i
←
	∂ y +mp

)
us(p)

]∣∣∣∣
y′1=0

. (B.6)

The next step is to represent the Green’s function in (B.6)
as a functional integral and to integrate out the quark
degrees of freedom. This leads to a number of nonpertur-
bative diagrams. The important ones for us, that is the
odderon-exchange diagrams, are shown in Fig. 7. Again
there are diagrams of type (a) and (b). The corresponding
analytic expressions are as follows:

M(a)µν
s′s

(
A3, n, π+; p′2, q

′, p, q
)

=
〈
Ũs′s
(
p′1, p

′
2, p
)
Aµν(q′, q)

〉
G
, (B.7)

M(b)µν
s′s

(
A3, n, π+; p′2, q

′, p, q
)

=
〈
Ũs′s
(
p′1, p

′
2, p
)
B̃µ(q′)Bν(q)

〉
G
. (B.8)

Here we define

Ũs′s(p
′
1, p

′
2, p) =

1

2πmpZp

∫
d4y′2d

4yeip
′
2y
′
2e−ipy

×
[(
�y′2
+m2π

)
ūs′
(
p′1
)(
− i
→
	∂ y′1
+mn

)

×ϕ+
(
y′2
)
ψn
(
y′1
)
ψ̄p(y)

(
i
←
	∂ y +mp

)
us(p)

]∣∣∣∣
y′1=0

,

(B.9)

where

ϕ+
(
y′2
)
ψn
(
y′1
)
ψ̄p(y) =

1

fπm2π

∂

∂y′λ2
Γα′β′γ′ Γ̄αβγ

(
γλγ5

)
δδ′

×

[
1

i
S
(d)
Fβ′δ

(
y′1, y

′
2;G
)1
i
S
(d)
Fα′γ

(
y′1, y;G

)

−
1

i
S
(d)
Fα′δ

(
y′1, y

′
2;G
)1
i
S
(d)
Fβ′γ

(
y′1, y;G

)]

×

[
1

i
S
(u)
Fδ′β

(
y′2, y;G

)1
i
S
(u)
Fγ′α

(
y′1, y;G

)

−
1

i
S
(u)

Fδ′α

(
y′2, y;G

)1
i
S
(u)

Fγ′β

(
y′1, y;G

)]
.

(B.10)

The expressions (B.7) and (B.8) are completely analo-
gous to (28) and (29), respectively. They contain the same
quantities Aµν(q′, q) (30), Bν(q) (32) and B̃µ(q′) (33).
The q′-dependence is contained only in Aµν(q′, q)
and B̃µ(q′). The discussion of the divergences
q′µM

(a,b)µν
(
A3, n, π+; p′2, q

′, p, q
)
is, therefore, the same as

in Sects. 3–5 for reaction (15). The final result is that also
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the odderon-exchange amplitudes for the proton break-up
reaction (71) are proportional tom2π,

M
(a,b)ν

s′s

(
π0, n, π+; p′2, q

′, p, q
)
∝m2π , (B.11)

and, therefore, vanish in the chiral limit.
The generalisation of this result to the odderon-ex-

change amplitudes of other nucleon break-up reactions is
straightforward.
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